Network Simulation Models

Rolf Riesen
Sandia National Laboratories
rolf@sandia.gov

July 23, 2009

Motivation Seshat

Cluster Sim

SST

The End

Motivation

JOWOG-34 2009 2 / 19

Cluster Sim

SST

Seshat

The End

- Simulating a large, next-generation system to the gate level is not always possible, nor necessary
- Sometimes a less detailed approach is enough

JOWOG-34 2009 3 / 19

Seshat

Seshat

Currently

Multicore

Bisection

Params

Cluster Sim

SST

The End

Seshat

JOWOG-34 2009 4 / 19

Seshat

Seshat

Currently Multicore

.........

Bisection

Params

Cluster Sim

SST

The End

- Named after Egyptian goddess responsible for measurements and record keeping
- Execution driven network model
- Inserts between application and MPI library
- Runs application in virtual time frame
 - Model dictates delivery of actual data
- Models XT-3 Red Storm

network

JOWOG-34 2009 5 / 19

Motivation
Seshat
Seshat
Currently
Multicore
Bisection
Params
Cluster Sim
SST

The End

- Modeling message injection rate
- Multicore system
 - ◆ Shorter delays and less congestion between cores
- NIC throughput (when used by multiple cores)
- Modeling topological bisection bandwidth
 - Number of bisection links
- Number of connections between NIC and network
- Node allocation choice

JOWOG-34 2009 6 / 19

Seshat

Seshat

Currently

Multicore

Bisection

Params

Cluster Sim

SST

The End

- Contention for NIC access
- Cores do not have to be on same physical node

JOWOG-34 2009 7 / 19

Bisection Bandwidth and Topology

Motivation

Seshat

Seshat

Currently

Multicore

Bisection

Params

Cluster Sim

SST

The End

- Bisection is modeled through
 - Number of links, rank allocation algorithm, Link bandwidth and latency

Seshat

Seshat

Currently

Multicore

Bisection

Params

Cluster Sim

SST

The End

- CPU speed factor: Time adjustment between MPI calls
- Number of bisection links
- Cross-over point to long MPI protocol
- MPI buffer space for short, core-to-core messages
- Bandwidth of an individual network link
- Latency of an individual network link
- Router fanout: Number of ports into network
- Bus bandwidth leading into the NIC
- Bus latency leading into the NIC
- Message interleaving on links
- Send overhead to another core
- Receive overhead from another core
- Send overhead through NIC
- Receive overhead from NIC
- Number of cores per NIC
- Core to NIC allocation: linear, round-robin, or random

JOWOG-34 2009 9 / 19

Seshat

Cluster Sim

Implement

Concepts

Results

SST

The End

Cluster Simulator

JOWOG-34 2009 10 / 19

Cycle-Accurate Simulation at Scale

Motivation

Seshat

Cluster Sim

Implement

Concepts

Results

SST

The End

JOWOG-34 2009 11 / 19

Motivation
Seshat
Cluster Sim
Implement
Concepts
Results

The End

SST

- Accurately simulate node (IBM's Mambo)
- Model network
- Ideal to study node characteristics at scale
- Synchronization interval: 50'000 cycles
 - Enough for accuracy, while still delivering good performance
- Fast-forward mode
 - No cache simulation until interesting part of application is reached
- Scalability
 - As good as application under simulation

JOWOG-34 2009 12 / 19

Seshat

Cluster Sim

Implement

Concepts

Results

SST

The End

Node count

Cache injection lowers memory pressure and increases

Seshat

Cluster Sim

SST

SST

Router

NIC/Node

The End

SST

JOWOG-34 2009 14 / 19

Motivation
Seshat
Cluster Sim
SST
SST
Router
NIC/Node
The End

- Apply Seshat and Cluster Sim lessons to SST
- Use genericProc component as a driver
 - ◆ Jeanine Cook's processor when available
 - Should work with any CPU component; e.g. trace-driven driver
- Router model
- Intelligent NIC

JOWOG-34 2009 15 / 19

Seshat

Cluster Sim

SST

SST

Router

NIC/Node

The End

- Similar to ASCI Red router
- Source routing in X and Y direction
- Add hop delay

- Congestion not done yet, but should be easy
- Integrate with CA topology builder

Seshat

Cluster Sim

SST

SST

Router

NIC/Node

The End

- Three components
 - Router model, CPU simulator, NIC model
- Message matching in NIC model
- Delay model in NIC

Motivation Seshat Cluster Sim SST The End

The End

JOWOG-34 2009 18 / 19

Motivation
Seshat
Cluster Sim
SST
The End

■ Cluster Simulator:

Supercomputing'09 paper: Instruction-Level Simulation
 of a Cluster at Scale, Edgar Leon, Rolf Riesen, Arthur B.
 Maccabe, Patrick G. Bridges

Seshat:

- ◆ Cluster'06 paper: A Hybrid MPI Simulator, Rolf Riesen
- ◆ CAC'06 paper: Communication Patterns, Rolf Riesen

Questions?

JOWOG-34 2009 19 / 19